
Unit 5 Introduction to Swings & Networking

1
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

Swings:

 AWT is used for creating GUI in Java. However, the AWT components are internally
depends on native methods like C functions and operating system equivalent and hence
problems related to portability arise (look and feel. Ex. Windows window and MAC
window). And, also AWT components are heavy weight. It means AWT components take
more system resources like memory and processor time.

 Due to this, Java soft people felt it is better to redevelop AWT package without
internally taking the help of native methods. Hence all the classes of AWT are extended to
form new classes and a new class library is created. This library is called JFC (Java
Foundation Classes).

Java Foundation Classes (JFC):

 JFC is an extension of original AWT. It contains classes that are completely portable,
since the entire JFC is developed in pure Java. Some of the features of JFC are:

 1. JFC components are light-weight: Means they utilize minimum resources.

 2. JFC components have same look and feel on all platforms. Once a component is
 created, it looks same on any OS.

 3. JFC offers “pluggable look and feel” feature, which allows the programmer to
 change look and feel as suited for platform. For, ex if the programmer wants to
 display window-style button on Windows OS, and Unix style buttons on Unix, it is
 possible.

 4. JFC does not replace AWT, but JFC is an extension to AWT. All the classes of JFC
 are derived from AWT and hence all the methods in AWT are also applicable in
 JFC.

 So, JFC represents class library developed in pure Java which is an extension to AWT and
swing is one package in JFC, which helps to develop GUIs and the name of the package is

 import javax.swing.*;

 Here x represents that it is an ‘extended package’ whose classes are derived from
 AWT package.

MVC Architecture:

 In MVC terminology,
 Model corresponds to the state information associated

with the component (data).
 For example, in the case of a check box, the model
contains a field that indicates if the box is checked or
unchecked.

 The view visual appearance of the component based
upon model data.

Unit 5 Introduction to Swings & Networking

2
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

 The controller acts as an interface between view and model. It intercepts all
the requests i.e. receives input and commands to Model / View to change
accordingly.

 Although the MVC architecture and the principles behind it are conceptually sound,
the high level of separation between the view and the controller is not beneficial for Swing
components. Instead, Swing uses a modified version of MVC that combines the view and the
controller into a single logical entity called the UI delegate. For this reason, Swing’s approach
is called either the Model-Delegate architecture or the Separable Model architecture.

Figure : With Swing, the view and the controller are combined into a UI-delegate object

 So let’s review: each Swing component contains a model and a UI delegate.
The model is responsible for maintaining information about the component’s state.
The UI delegate is responsible for maintaining information about how to draw the
component on the screen. In addition, the UI delegate reacts to various events.

 Difference between AWT and Swings:

AWT Swing
Heavy weight Light weight
Look and feel is OS based Look and feel is OS independent.
Not pure Java based Pure Java based
Applet portability: Web-browser support Applet portability: A plug-in is

required

Do not support features like icon and tool
tip.

It supports.

The default layout manager for applet:
flow and frame is border layout.

The default layout manger for content
pane is border layout.

Unit 5 Introduction to Swings & Networking

3
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

Components and Containers:

 A Swing GUI consists of two key items: components and containers.

 However, this distinction is mostly conceptual because all containers are also
components. The difference between the two is found in their intended purpose: As the term
is commonly used, a component is an independent visual control, such as a push button or
slider. A container holds a group of components. Thus, a container is a special type of
component that is designed to hold other components.

 Furthermore, in order for a component to be displayed, it must be held within a
container. Thus, all Swing GUIs will have at least one container. Because containers are
components, a container can also hold other containers. This enables Swing to define what
is called a containment hierarchy, at the top of which must be a top-level container.

Components:

 In general, Swing components are derived from the JComponent class. JComponent
provides the functionality that is common to all components. For example, JComponent
supports the pluggable look and feel. JComponent inherits the AWT classes Container and
Component. All of Swing’s components are represented by classes defined within the
package javax.swing. The following figure shows hierarchy of classes of javax.swing.

Unit 5 Introduction to Swings & Networking

4
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

Containers:

 Swing defines two types of containers.
 1. Top-level containers/ Root containers: JFrame, JApplet,JWindow, and JDialog.
 As the name implies, a top-level container must be at the top of a containment
 hierarchy. A top-level container is not contained within any other container.
 Furthermore, every containment hierarchy must begin with a top-level container.
 The one most commonly used for applications are JFrame and JApplet.

 Unlike Swing’s other components, the top-level containers are heavyweight.
 Because they inherit AWT classes Component and Container.

 Whenever we create a top level container four sub-level containers are
 automatically created:

 Glass pane (JGlass)

 Root pane (JRootPane)

 Layered pane (JLayeredPane)

 Content pane

Glass pane: This is the first pane and is very close to the monitor’s screen. Any
components to be displayed in the foreground are attached to this glass pane. To
reach this glass pane we use getGlassPane() method of JFrame class, which return
Component class object.

Root Pane: This pane is below the glass pane. Any components to be displayed in the
background are displayed in this frame. To go to the root pane, we can use
getRootPane() method of JFrame class, which returns JRootPane object.

Layered pane: This pane is below the root pane. When we want to take several
components as a group, we attach them in the layered pane. We can reach this
pane by calling getLayeredPane() method of JFrame class which returns
JLayeredPane class object.

Conent pane: This is bottom most of all, Individual components are attached to this
pane. To reach this pane, we can call getContentPane() method of JFrame class
which returns Container class object.

 2. Lightweight containers – containers do inherit JComponent. An example of a
 lightweight container is JPanel, which is a general-purpose container. Lightweight
 containers are often used to organize and manage groups of related components.

Unit 5 Introduction to Swings & Networking

5
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

JFrame:

 Frame represents a window with a title bar and borders. Frame becomes the basis for
creating the GUIs for an application because all the components go into the frame.
To create a frame, we have to create an object to JFrame class in swing as
 JFrame jf=new JFrame(); // create a frame without title
 JFrame jf=new JFrame(“title”); // create a frame with title

 To close the frame, use setDefaultCloseOperation() method of JFrame class

 setDefaultCloseOperation(constant)

 where constant values are

JFrame.EXIT_ON_CLOSE
This closes the application upon clicking the
close button

JFrame.DISPOSE_ON_CLOSE
This closes the application upon clicking the
close button

JFrame.DO_NOTHING_ON_CLOSE
This will not perform any operation upon
clicking close button

JFrame.HIDE_ON_CLOSE
This hides the frame upon clicking close
button

 Example:
 import javax.swing.*;
 class FrameDemo

{
 public static void main(String arg[])
 {
 JFrame jf=new JFrame("PVPSIT");
 jf.setSize(200,200);
 jf.setVisible(true);
 jf.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);
 }
}

Example: To set the background
import javax.swing.*;
 import java.awt.*;
class FrameDemo
{
 public static void main(String arg[])
 {
 JFrame jf=new JFrame("PVPSIT");
 jf.setSize(200,200);
 jf.setVisible(true);
 Container c=jf.getContentPane();
 c.setBackground(Color.green);
 }

Unit 5 Introduction to Swings & Networking

6
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

}
JApplet:

 Fundamental to Swing is the JApplet class, which extends Applet. Applets that use
Swing must be subclasses of JApplet. JApplet is rich with functionality that is not found in
Applet. For example, JApplet supports various “panes,” such as the content pane, the glass
pane, and the root pane.
 One difference between Applet and JApplet is, When adding a component to an
instance of JApplet, do not invoke the add() method of the applet. Instead, call add() for
the content pane of the JApplet object.
 The content pane can be obtained via the method shown here:
 Container getContentPane()
 The add() method of Container can be used to add a component to a content pane.
Its form is shown here:
 void add(comp)
 Here, comp is the component to be added to the content pane.

JComponent:

 The class JComponent is the base class for all Swing components except top-level
containers. To use a component that inherits from JComponent, you must place the
component in a containment hierarchy whose root is a top-level SWING container.

Constructor: JComponent();

 The following are the JComponent class's methods to manipulate the appearance of
the component.

public int getWidth ()
Returns the current width of this component
in pixel.

public int getHeight ()
Returns the current height of this component
in pixel.

public int getX()
Returns the current x coordinate of the
component's top-left corner.

public int getY ()
Returns the current y coordinate of the
component's top-left corner.

public java.awt.Graphics getGraphics()
Returns this component's Graphics object
you can draw on. This is useful if you want
to change the appearance of a component.

public void setBackground (java.awt.Color bg) Sets this component's background color.

public void setEnabled (boolean enabled)
Sets whether or not this component is
enabled.

public void setFont (java.awt.Font font)
Set the font used to print text on this
component.

public void setForeground (java.awt.Color fg) Set this component's foreground color.
public void setToolTipText(java.lang.String text) Sets the tool tip text.

public void setVisible (boolean visible)
Sets whether or not this component is
visible.

Unit 5 Introduction to Swings & Networking

7
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

JLabel:

• Jlabel is used to display a text

– JLabel(string str)

– JLabel(Icon i)

– JLabel(String s, Icon i, int align)

• CENTER, LEFT, RIGHT, LEADING, TRAILING

• Icon – is an interface

– The easiest way to obtain icon is to use ImageIcon class. ImageIcon class

implements Icon interface.

Important Methods:

Icon getIcon()

String getText()

void setIcon(Icon icon)

 void setText(String s)

JText Fields

 The Swing text field is encapsulated by the JTextComponent class, which extends
JComponent. It provides functionality that is common to Swing text components. One of its
subclasses is JTextField, which allows you to edit one line of text. Some of its constructors
are shown here:
 JTextField()
 JTextField(int cols)
 JTextField(String s, int cols)
 JTextField(String s)

 Here, s is the string to be presented, and cols is the number of columns in the text
field.

 The following example illustrates how to create a text field. The applet begins by
getting its content pane, and then a flow layout is assigned as its layout manager. Next, a
JTextField object is created and is added to the content pane.

Example:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class MyFrame extends JFrame implements ActionListener
{
 JLabel jl, jl2;
 JTextField jtf;
 MyFrame()
 {

Unit 5 Introduction to Swings & Networking

8
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

 setLayout(new FlowLayout());
 jl=new JLabel("Enter your name");
 jl2=new JLabel();
 jtf=new JTextField("PVPSIT",15);

 add(jl);
 add(jtf);
 add(jl2);
 jtf.addActionListener(this);
 }
 public void actionPerformed(ActionEvent ae)
 {
 jl2.setText(jtf.getText());
 }
}
class FrameDemo
{
 public static void main(String arg[])
 {
 MyFrame f=new MyFrame();
 f.setTitle("Welcome to Swings");
 f.setSize(500,500);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

The JButton Class

 The JButton class provides the functionality of a push button. JButton allows an
icon, a string, or both to be associated with the push button. Some of its constructors are
shown here:
 JButton(Icon i)
 JButton(String s)
 JButton(String s, Icon i)
 Here, s and i are the string and icon used for the button.

Example:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class MyFrame extends JFrame implements ActionListener
{
 JButton jb,jb1,jb2;
 JLabel jl;
 MyFrame()
 {
 setLayout(new FlowLayout());
 jl=new JLabel();

Unit 5 Introduction to Swings & Networking

9
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

 jb=new JButton("VRSEC");
 ImageIcon ii=new ImageIcon("pvp.JPG");
 jb1=new JButton("PVPSIT",ii);

 ImageIcon ii2=new ImageIcon("bec.JPG");
 jb2=new JButton("BEC", ii2);

 add(jb); add(jb1); add(jb2); add(jl);

 jb.addActionListener(this);
 jb1.addActionListener(this);
 jb2.addActionListener(this);
 }
 public void actionPerformed(ActionEvent ae)
 {
 jl.setText("You Pressed: "+ae.getActionCommand());
 }
}
class FrameDemo
{
 public static void main(String arg[])
 {
 MyFrame f=new MyFrame();
 f.setTitle("Welcome to Swings");
 f.setSize(500,500);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

JCheckBox:

 The JCheckBox class, which provides the functionality of a check box, is a concrete
implementation of AbstractButton. Its immediate super class is JToggleButton, which
provides support for two-state buttons (true or false). Some of its constructors are shown here:
 JCheckBox(Icon i)
 JCheckBox(Icon i, boolean state)
 JCheckBox(String s)
 JCheckBox(String s, boolean state)
 JCheckBox(String s, Icon i)
 JCheckBox(String s, Icon i, boolean state)

 Here, i is the icon for the button. The text is specified by s. If state is true, the check
box is initially selected. Otherwise, it is not.
The state of the check box can be changed via the following method:
 void setSelected(boolean state)
 Here, state is true if the check box should be checked.
 When a check box is selected or deselected, an item event is generated. This is
handled by itemStateChanged(). Inside itemStateChanged(), the getItem() method gets

Unit 5 Introduction to Swings & Networking

10
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

the JCheckBox object that generated the event. The getText() method gets the text for that
check box and uses it to set the text inside the text field.

Example:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class MyFrame extends JFrame implements ItemListener
{
 JCheckBox jcb,jcb1,jcb2;
 JLabel jl;
 MyFrame()
 {
 setLayout(new FlowLayout());
 jl=new JLabel();

 jcb=new JCheckBox("VRSEC");
 jcb1=new JCheckBox("PVPSIT");
 jcb2=new JCheckBox("BEC");

 add(jcb); add(jcb1); add(jcb2); add(jl);

 jcb.addItemListener(this);
 jcb1.addItemListener(this);
 jcb2.addItemListener(this);
 }
 public void itemStateChanged(ItemEvent ie)
 {
 JCheckBox jc=(JCheckBox)ie.getItem();
 jl.setText("You Selected :"+jc.getText());
 }
}
class FrameDemo
{
 public static void main(String arg[])
 {
 MyFrame f=new MyFrame();
 f.setTitle("Welcome to Swings");
 f.setSize(500,500);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

Unit 5 Introduction to Swings & Networking

11
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

JRadioButton:

 Radio buttons are supported by the JRadioButton class, which is a concrete
implementation of AbstractButton. Its immediate superclass is JToggleButton, which
provides support for two-state buttons. Some of its constructors are shown here:

 JRadioButton(Icon i)
 JRadioButton(Icon i, boolean state)
 JRadioButton(String s)
 JRadioButton(String s, boolean state)
 JRadioButton(String s, Icon i)
 JRadioButton(String s, Icon i, boolean state)

 Here, i is the icon for the button. The text is specified by s. If state is true, the button
is initially selected. Otherwise, it is not.

 Radio buttons must be configured into a group. Only one of the buttons in that group
can be selected at any time. For example, if a user presses a radio button that is in a group,
any previously selected button in that group is automatically deselected. The ButtonGroup
class is instantiated to create a button group. Its default constructor is invoked for this
purpose. Elements are then added to the button group via the following method:
 void add(AbstractButton ab)
 Here, ab is a reference to the button to be added to the group.

 Radio button presses generate action events that are handled by actionPerformed().
The getActionCommand() method returns the text that is associated with a radio button and
uses it to set the text field.

Example:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class MyFrame extends JFrame implements ActionListener
{
 JRadioButton jrb,jrb1,jrb2;
 JLabel jl;
 MyFrame()
 {
 setLayout(new FlowLayout());
 jl=new JLabel();

 jrb=new JRadioButton("VRSEC");
 jrb1=new JRadioButton("PVPSIT");
 jrb2=new JRadioButton("BEC");

 add(jrb); add(jrb1); add(jrb2); add(jl);

 ButtonGroup bg=new ButtonGroup();
 bg.add(jrb); bg.add(jrb1); bg.add(jrb2);

Unit 5 Introduction to Swings & Networking

12
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

 jrb.addActionListener(this);
 jrb1.addActionListener(this);
 jrb2.addActionListener(this);
 }
 public void actionPerformed(ActionEvent ae)
 {
 jl.setText("You Selected :"+ae.getActionCommand());
 }
}
class FrameDemo
{
 public static void main(String arg[])
 {
 MyFrame f=new MyFrame();
 f.setTitle("Welcome to Swings");
 f.setSize(500,500);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

JComboBox :

 Swing provides a combo box (a combination of a text field and a drop-down list)
through the JComboBox class, which extends JComponent.

 A combo box normally displays one entry. However, it can also display a drop-down
list that allows a user to select a different entry. You can also type your selection into the text
field.
 Two of JComboBox’s constructors are shown here:
 JComboBox()
 JComboBox(Vector v)

 Here, v is a vector that initializes the combo box. Items are added to the list of choices
via the addItem() method, whose signature is shown here:

 void addItem(Object obj)

 Here, obj is the object to be added to the combo box.

 By default, a JComboBox component is created in read-only mode, which means the
user can only pick one item from the fixed options in the drop-down list. If we want to allow
the user to provide his own option, we can simply use the setEditable() method to make the
combo box editable.

Unit 5 Introduction to Swings & Networking

13
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

Example:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
class MyFrame extends JFrame implements ItemListener
{
 JComboBox jcb;
 MyFrame()
 {
 setLayout(new FlowLayout());
 String cities[]={"Amaravati","Guntur","Vijayawada","Vizag","Kurnool"};

 jcb=new JComboBox(cities);
 jcb.addItem("Tirupati");
 jcb.setEditable(true);
 add(jcb);
 jcb.addItemListener(this);
 }
 public void itemStateChanged(ItemEvent ie)
 {
 JOptionPane.showMessageDialog(null,jcb.getSelectedItem());
 }
}
public class JComboBoxDemo
{
 public static void main(String[] args)
 {
 MyFrame jf = new MyFrame();
 jf.setSize(500,500);
 jf.setVisible(true);
 jf.setTitle("Frame Example");
 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

 JList:

• JList class is useful to create a list which displays a list of items and allows the user to
select one or more items.

– Constructors
• JList()
• JList(Object arr[])
• JList(Vector v)

– Methods
• getSelectedIndex() – returns selected item index
• getSelectedValue() – to know which item is selected in the list
• getSelectedIndices() – returns selected items into an array
• getSelectedValues() – returns selected items names into an array

Unit 5 Introduction to Swings & Networking

14
Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

• JList generates ListSelectionEvent
– ListSelectionListener

• void valueChanged(ListSelectionEvent)
– Package is javax.swing.event.*;

Example:

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

class MyFrame extends JFrame implements ListSelectionListener
{
 JLabel jl;
 JList j;
 MyFrame()
 {
 setLayout(new FlowLayout());
 jl=new JLabel("Choose one college..");

 String arr[]={"BEC", "PVPSIT","RVR&JC", "VRSEC"};

 j=new JList(arr);
 add(jl);
 add(j);
 j.setToolTipText("I am PVPSIT");
 j.addListSelectionListener(this);
 }
 public void valueChanged(ListSelectionEvent le)
 {
 JOptionPane.showMessageDialog(null, j.getSelectedValue());
 }
}
class FrameDemo2
{
 public static void main(String arg[])
 {
 MyFrame f=new MyFrame();
 f.setTitle("Welcome to Swings");
 f.setSize(500,500);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

